Surface-enhanced ellipsometric contrast microscopy (SEEC) uses an upright or inverted optical microscope in a crossed polarization configuration and specific supporting plates called surfs on which the sample is deposited for observation. It is described as an optical Imaging technique.
SEEC relies on precise control of the reflection properties of polarized light on a surface, improving the axial sensitivity of an optical microscope by two orders of magnitude without reducing its lateral resolution. Applications could include real-time visualization of films as thin as 0.3 micrometers and isolated nano-objects in air and in water.
The performance of these supports is evaluated by measuring the contrast (C) of the sample defined as: C = (I1-I0)/(I0+I1) where I0 and I1 represent the intensities reflected by the bare surf and by the analyzed sample on the surf, respectively. For a one nanometer-film thickness, the surfs display a contrast 200 times higher than on silicon wafer.
This high contrast increase allows the visualization with standard Optics microscope of films with thicknesses down to 0.3 nanometers, as well as nano-objects (down to a 2 nanometer diameter) and this, without any kind of sample labeling (neither fluorescence, nor a radioactive marker). An illustration of the contrast enhancement is in the Figure for optical microscopy between cross polarizers of a Langmuir-Blodgett structure on a silicon wafer and on a surf.
|
|